Главное Свежее Вакансии   Проекты
Комментируемое:

Список ссылок временно недоступен
69 0 В избр. Сохранено
Авторизуйтесь
Вход с паролем

Актуальные вопросы процессинга данных

Своим мнением по вопросам обработки, хранения, аналитики, обеспечения конфиденциальности данных, а также опытом работы с big data и кейсами применения технологий в промышленности и других сферах поделились топ-менеджеры и ведущие специалисты крупных компаний.

Среди наиболее актуальных аспектов, связанных с применением технологий на основе Big Data эксперты отметили:

Непонимание или не достаточно глубокое понимание заказчиками сути технологии.

Илья Блаер — заместитель генерального директора First Line Software подчеркнул: «Существует, зачастую, непонимание сути технологии, того, какие именно данные нужно собирать, как выделять из общего массива полезную информацию, как использовать данные? Ведь смысл и цель технологии Big Data — превращение их в Smart Data, иными словами, извлечение из них пользы».

Леонид Губарьков — ведущий специалист по разработке решений искусственного интеллекта компании Талмер (Системная интеграция) в своем выступлении поддержал насущность этой проблемы. По его мнению, рабочий процесс вокруг машинного обучения выстраивается несложно. Однако, основная проблема кроется в том, что чаще всего задача формулируется бизнесом достаточно размыто.

По мнению экспертов, необходима большая работа по обучению клиентов сути и важности этих технологий, как вариант, на примере пилотных проектов. Нужно проводить разъяснения по этому поводу, с привлечением бизнес-аналитиков — экспертов определенной отрасли, доносить до бизнеса необходимость грамотного внедрения технологий сбора и обработки данных. На этапе определения задачи необходимо детально обсуждать бизнес требования.

Ненадлежащее качество данных или их отсутствие.

Леонид Губарьков, Талмер в своем выступлении, посвященном основным проблемам машинного обучения и путям их решенияотметил, что с наступлениемэпохи Индустрии 4.0, мир переходит к киберфизическим системам. Ключевой вопрос пока лежит в разрезе внедрения на производствах: оцифровка разных данных, порой низкого качества, а также разработка алгоритмовDataScience (науки о данных). Спикер акцентировал внимание на такой проблеме машинного обучения, как отсутствие данных, необходимых для обучения алгоритма. Часто требуется человеческий опыт, а откуда его брать, если, например, новая буровая установка не имела опыта эксплуатации?

Быстрый рост объемов данных, для которых требуются все новые хранилища и все большая скорость их обработки, а значит ресурсы и средства.

Сергей Платонов, заместитель генерального директора RAIDIX, обратил внимание участников на быстрые темпы цифровизации, в своем выступлении он отметил: "Это проявляется в развитии потребности производств и бизнесов по считыванию, учету, систематизации различных данных, полученных с различных датчиков и других устройств. Также спикер указал на важность понимания, что быстро меняются паттерны создания данных (кто, когда и как данные создает), и паттерн обработки данных (lifecycle). Эксперт подчеркнул, что сейчас сложно предсказать, какие архитектуры нейросетей потребуются завтра, поэтому технологии идут к комбинированным многокомпонентным системам хранения и обработки данных.

Состояние бизнес-процессов на предприятиях крайне затрудняет эффективное внедрение технологии.

Ольга Минаева — директор по взаимодействию с государственными органами ABBYY Россия отметила, что зачастую основную проблему представляет не столько сами данные, сколько состояние бизнес-процессов на предприятиях, подчеркнув необходимость постоянной работы по актуализации бизнес-процессов и подстраиванию их под новые Big Data технологии. Спикер отметила, что основываясь на данных исследования McKinsey «Fivemovestomakeduring a digitaltransformation» — 2019, только 15% проектов по цифровой трансформации признаны успешными. При этом основными барьерами при цифровизации процессов являются: сопротивление сотрудников, непонимание потенциальных выгод от внедрения, непрозрачность бизнес-процессов. Для эффективного внедрения ИИ тоже нужен ИИ, и это — ProcessIntelligence. Перед стартом проекта важно проанализировать бизнес-процесс и понять, как он устроен.

Смещение фокуса с вопросов хранения и безопасности данных на проблему необходимости их очистки, обработки, систематизации и использования для принятия бизнес-решений, а также роль человеческого фактора в решении этой задачи.

Елизавета Иванова — R&D директор группы компаний ЭГО Транслейтинг (многоцелевого лингвистического провайдера, разработчика специализированных программных решений по очистке данных для оптимизации работы переводческой отрасли) прокомментировала вопрос о том, как превратить Data Lake в полезный систематизированный ресурс бизнеса?: «Не все данные нужно хранить, так как далеко не все данные являются ценными. Ценные данные — это собранные, очищенные и нормализованные данные. В 2020 году прогнозируется качественное смещение проблематики от хранения и безопасности к преобразованию, очистке данных. Узкое место ИИ — хорошо размеченные данные. Разметка — качественное преобразование, в процессе которого сырые данные дополняются метаданными и преобразуются в информацию. Разметка и очистка больших данных невозможна без участия человека (HITL), а разметчик — профессия будущего».

Дмитрий Аминов — директор по развитию компании IVideon, в свою очередь, отметил, что одними из ключевых вопросов остаются вопросы о том, что делать с огромными массивами получаемой ежедневно видеоинформации и как выбирать нужное для обработки и хранения для перехода к видео-аналитике для принятия решений.

Важность лингвистических технологий для Big Data

Елизавета Иванова, ЭГО Транслейтинг подчеркнула, что 80% больших данных (структурированной и не структурированной информации во всех отраслях объемом более 1 Тб) — это текстовые данные и именно они представляют наибольшую ценность. Для работы с ними необходимы лингвисты, так как используются специальные алгоритмы обработки. NLP(Naturallanguageprocessing) — обработка естественного языка — одно из ключевых направлений ИИ по стратегическому трансформационному потенциалу. Объем рынка — 19 млрд.$ (2019), прогнозное увеличение к 2025 до 22 млрд.$.

Никита Шаблыков — коммерческий директор компании PROMT отметил, что налицо беспрецедентный рост объемов информации, которую нужно обрабатывать, ее источников, в том числе многоязычных, и требований к ее безопасности. Спикер рассказал про передовые решения PROMT в области искусственного интеллекта: PROMT NeuralTranslationServer (перевод текстов и документов) — систему, позволяющую в режиме офлайн работать с большими данными под нагрузкой и обеспечивающую высокую точность перевода со скоростью 2000 слов в секунду благодаря использованию нейронных сетей;а также PROMT Analyzer SDK (анализ текстов и документов)— систему извлечения, распознавания и обработки текстовых данных. По мнению эксперта, на сегодняшний день потребность в этом велика и грамотная обработка информации ведет к снижению рисков её утраты, сокращению сроков принятия основанных на ней решений, что обеспечивает реальный переход к Smart Data.

Участники поделились практическим опытом внедрения технологии на основе BigData.

First Line Software. Илья Блаер отметил, что основная экспертиза First Line Software по применению технологии Big Data находится в сфере финансового сектора и медицины, однако есть и опыт разработки пилотного проекта на промышленном производстве - была создана нейросеть, обеспечивающая соблюдение стандартов охраны труда на промышленном предприятии.

Вячеслав Самарин — директор направления IoT компании «СБКлауд» (входит в ГК «АйТеко») рассказал об опыте работы с технологиями Big Data в торговле, с компаниями с распределенными офисами, а также с гос.органами в разрезе создания «умных» социальных объектов. Основные запросы бизнеса в этих сегментах: диспетчеризация процессов и профильных проблем, диагностика сбоев, безопасность хранения товаров, смарт-маркетинг, HR-процессы, построение сквозных бизнес-процессов. По мнению эксперта, торговля не боится инноваций.

Михаил Никитенко, заместитель коммерческого директора АО «Кодекс» рассказал о системе управления требованиями «ТЕХЭКСПЕРТ» и привел пример внедрения системы в ПАО «КАМАЗ»: в 2019 году заключен договор о сотрудничестве с Казанским (Приволжским) федеральным университетом в рамках проекта по формированию и классификации требований к семейству автомобилей К5 торговой марки «КамАЗ». Ранее, в 2017 году с ПАО «ТРАНСНЕФТЬ» был заключен договор о создании системы управления нормативными документами, включающий модули формирования требований и анализа нормативных документов, на противоречие требований. Требования содержатся в нормативной документации, во внутренней документации предприятий, при этом, данные хранятся в различном виде и формате. Внедрение систем управления требованиями повышают эффективность производства и управления качеством продукции.

В целом, переход к Smart Data — это современный технологический тренд. Данных и их источников становится все больше, поэтому необходимо это грамотно использовать. Переход к цифровой экономике и экономике данных требует всё больших интеллектуальных, временных, технических, технологических и денежных ресурсов. Вопрос работы с Big Data и связанные вопросы внедрения искусственного интеллекта актуальны практически во всех отраслях экономики.

0
В избр. Сохранено
Авторизуйтесь
Вход с паролем
Комментарии
Первые Новые Популярные
Комментариев еще не оставлено
Выбрать файл
Блог проекта
Расскажите историю о создании или развитии проекта, поиске команды, проблемах и решениях
Написать
Личный блог
Продвигайте свои услуги или личный бренд через интересные кейсы и статьи
Написать

Spark использует cookie-файлы. С их помощью мы улучшаем работу нашего сайта и ваше взаимодействие с ним.