В нашем примере у группы Б инкрементальная выручка и прибыль выше, чем у группы А. Однако ROI оказался выше в группе А — значит, возврат инвестиций у первой группы выше, чем у второй. Вывод: вариант А является более эффективным.
Таблица с примером расчёта инкрементальной выручки, прибыли и ROI кампаний доступна по ссылке .
Мы не только определяем выручку от маркетингового воздействия, но и узнаём прибыль и возврат инвестиций в конкретной кампании.
Об альтернативах и о том, почему инкрементальный метод наиболее точный Конечно, это не единственный способ оценить эффективность CRM-маркетинга. Сравним его с популярными альтернативами: оценкой метрик и атрибуцией.
Почему измерить метрики недостаточно для оценки результатов Чтобы оценить эффект от коммуникаций и рекламы, маркетологи чаще всего отслеживают метрики: клики, конверсии в заказ, средний чек и так далее.
Эти показатели подходят для обзора CRM-маркетинга, но не отвечают на ключевой вопрос: были ли эти результаты достигнуты благодаря маркетинговому воздействию, или они были бы достигнуты и без него?
Метрики не дают понимания, какое именно воздействие в омниканальном пути клиента стало решающим.
К примеру, если пользователи открыли письмо, перешли по ссылке и купили, мы не можем утверждать, что это: прямое влияние коммуникации или просто совпадение.
Здесь нам на помощь приходит инкрементальный подход: он требует большего объёма данных и сложной методологии, но и даёт более точные ответы на вопросы маркетолога.
Атрибуция: альтернативный метод для оценки результатов кампании Инкрементальный метод часто сравнивают с атрибуцией. В рамках атрибуции маркетолог анализирует, какие кампании привели к целевому действию с помощью набора правил или моделей. Наиболее известная модель атрибуции в сквозной аналитике — Last Significant Click: это когда конверсию присваивают той активности или каналу, с которым у пользователя был последний контакт перед покупкой.
Этот метод не исключает инкрементальный подход, так что их можно использовать вместе. Но атрибуция всё же уступает ему в точности: она не учитывает влияние бренда, рекламы офлайн и других факторов — а значит, не может со 100% вероятностью атрибутировать покупку какому-либо воздействию.
Только тесты дают результат, максимально очищенный от влияния других факторов, поэтому инкремент — это всегда результат A/B- или A/B/C-тестирования.
Когда не стоит считать инкрементальность Инкрементальность помогает маркетологу понять, насколько прибыльна та или иная кампания, и оптимизировать расходы бизнеса на CRM-маркетинг. В отличие от обычных метрик и метода атрибуции, инкрементальность показывает эффективность конкретного воздействия с минимальной погрешностью.
Но и этот метод не идеален. Скорее всего он вам не подходит, если у вас:
Продукт или услуга с длинным циклом сделки — например, продажа квартир. В этом случае инкрементальные изменения слишком трудно отследить, и вероятность погрешности увеличивается. Небольшой трафик. Чтобы рассчитать инкрементальность, требуется большой объём данных, а при низком трафике он может оказаться слишком маленьким для статистически значимых выводов. Нет ресурса на сложные расчёты, тестирование и сбор данных. Для каждого воздействия, которое нужно оценить, придётся внедрять сложные процессы: выделять контрольную группу, оценивать разницу между группами и считать, насколько эта разница значима. Для остальных компаний инкрементальный метод — это must-have.
Статьи, инструкции, исследования, обзоры и другие материалы о маркетинге, основанном на данных о клиентах, читайте здесь
Материал подготовила Анна Калягина, контент-менеджер агентства Monk.
Эксперты статьи: Ирина Горина, старший веб-аналитик CRM-group; Алевтина Чиркова, старший руководитель проектов CRM-group