Лучшие статьи и кейсы стартапов
Включить уведомления
Дадим сигнал, когда появится
что-то суперстоящее.
Спасибо, не надо
Главное Свежее   Проекты
Рекомендуем
Продвинуть свой проект
557 2 В избр. Сохранено
Авторизуйтесь
Вход с паролем

Машинное обучение, примененное к таргетингу объявлений, позволило снизить цену клика в 3 раза

Алгоритм на базе машинного обучения способен отобрать аудиторию более лояльную к интернет-магазину, используя только публичные записи пользователей.

Идея

Возможно ли, используя только публичные данные из одной социальной сети, выделить группу людей, похожих на текущих клиентов онлайн магазина, тем самым размещая рекламу только на эту “более лояльную” аудиторию, уменьшить стоимость клика и, соответственно, цену привлечения клиента?

Входные данные

Источником данных для эксперимента была выбрана крупнейшая российская социальная сеть vk.com. Клиентами считались покупателей интернет-магазина одной из МЛМ-компаний. Для упрощения задачи пользователи подбирались только из города и области одного выбранного города-миллионника.

Данные:

  • Обучающая выборка профилей пользователей размером 27К (из которых 2К являются текущими клиентами интернет-магазина)
  • Тестовая выборка случайных профилей пользователей: 30К

b_58cf98fc21ba8.jpg

Технические детали

Ради эксперимента было решено не анализировать:

  1. Связь пользователей между собой.
  2. Персональные данные пользователей, находящиеся в открытом доступе.

В алгоритме использовались только следующие данные:

  1. Текст публичных записей пользователя за прошедшие два года.
  2. Количества лайков и репостов записей пользователя.

Для преобразования текста записей пользователей была применена трансформация TF-IDF (TF — term frequency, IDF — inverse document frequency). В качестве алгоритма машинного обучения был выбран хорошо зарекомендовавший себя в подобных задачах XGBoost.

Проверка идеи

Используя алгоритм на тестовой выборке было отобрано 1.5К пользователей потенциальных клиентов, похожих на текущих клиентов интернет магазина.

Для сравнения качества алгоритма из тестовой выборки случайным образом была отобрана контрольная выборка случайных пользователей аналогичного размера 1.5К.

Для проверки гипотезы был использован метод размещения объявления с ценой за тысячу показов. Было создано два идентичных объявления с одинаковой ценой за тысячу показов и таргетингом каждого на свою аудиторию.

b_58cf98b00781d.jpg

Выводы

Алгоритм на базе машинного обучения способен отобрать аудиторию более лояльную к интернет-магазину, используя только публичные записи пользователей. Применяя таргетинг объявлений на аудиторию, отобранную алгоритмом, мы получили в 3 раза более эффективное расходование бюджета за счёт в 3 раза меньшей стоимости клика.

Оригинал: https://dato.ml/cost-per-click-3-times-lower/

+7
В избр. Сохранено
Авторизуйтесь
Вход с паролем
Подбираем рекоммендации...
Комментарии
Первые Новые Популярные
Денис Краснокуцький
ни чего не понял. Как этот процесс проходил на практике?
Ответить
Евгений Демур
Этож реклама, как бэ ненавязчиво приглашают вас о деталях узнать через директ. Гляньте на сайт, там люди, роботы, всё как надо для начинающего стартапа :)
Ответить
Выбрать файл
Блог проекта
Расскажите историю о создании или развитии проекта, поиске команды, проблемах и решениях
Написать
Личный блог
Продвигайте свои услуги или личный бренд через интересные кейсы и статьи
Написать