Лучшие статьи и кейсы стартапов
Включить уведомления
Дадим сигнал, когда появится
что-то суперстоящее.
Спасибо, не надо
Вопросы Проекты Вакансии
Центр управления конверсией
Рекомендуем
Продвинуть свой проект
Лучшие проекты за неделю
30
Битрикс24

Битрикс24

www.bitrix24.ru

22
Отследить-посылку

Отследить-посылку

B2B-сервис трекинга посылок

13
WebResidentTeam

WebResidentTeam

webresident.agency

12
Devicerra

Devicerra

devicerra.com

12
Perezvoni.com

Perezvoni.com

perezvoni.com

11
Expresso

Expresso

www.expresso.today

11
myPreza

myPreza

mypreza.ru

9
Reader

Reader

Интернет-журнал о современных технологиях.

9
ADN Digital Studio

ADN Digital Studio

adn.agency

Показать следующие
Рейтинг проектов
Подписывайтесь на Спарк в Facebook

Почему товары для животных, одежду и косметику нельзя продавать одинаково

147 1 В избранное Сохранено
Авторизуйтесь
Вход с паролем
Cпецифика продаж в одной отрасли радикально отличается от другой. К примеру, в магазин стройтоваров никогда не придут за подарком, а в магазин электроники — запросто. А это отдельный скрипт.

В крупных торговых сетях есть целая культура обучения продавцов-консультантов. С курсами, экзаменами и подтверждением квалификации. То есть для продавца кафеля нереально прийти в М-Видео, пролистать прайс по диагонали и уже завтра переодеться в красную униформу.

Зачем им такое дотошное обучение?

Любому понятно: потому что специфика продаж в одной отрасли радикально отличается от другой. Вроде механики те же самые: посоветуй расходный материал, более дорогой/дешевый аналог и т.п., — а по факту получается, что этого мало. К примеру, в магазин стройтоваров никогда не придут за подарком, а в магазин электроники — запросто. А это уже отдельный скрипт продаж.

Будни товарных рекомендаций

В онлайн-ритейле все пока заметно проще. Роль продавцов-консультантов выполняют:

  • Онлайн-консультанты. Хороший специалист всегда лучше учитывает специфику продаж в его отрасли, чем любой машинный алгоритм, это факт. Правда, консультанты не имеют возможности что-то порекомендовать, пока покупатель сам к ним не обратится. Да и как показывает наше собственное исследование, даже топовые онлайн-ритейлеры не готовы тратить ресурсы на обучение именно консультантов-продажников — в итоге из них эту рекомендацию раскаленными клещами тащить приходится.
  • Товарные рекомендации. Современные рекомендации: выдают пользователю именно те товары, которые отвечают его потребностям (та самая персонализация). Рекомендации генерируются автоматически для каждого. Серьезный минус — рекомендации, которые учитывают специфику отрасли, есть только у крупных ритейлеров.

Собственно, почему? Система персональных рекомендаций, которая работает на вашем сайте — это десятки сложных математических моделей в одной программе, анализ характеристик конкретного пользователя на лету, вычисление рекомендаций за миллисекунды. Если коротко — сложная штука.

Разработка алгоритмов рекомендаций под каждую отрасль — это такая заметная»надстройка» и долгие часы работы. Соответственно, бюджет под это есть только у лидеров рынка.

Среди готовых рекомендательных систем, которые используют малые и средние магазины, отраслевую специфику учитывает всего пара решений: HookLogic (актуален на Западе) и REES46 (актуален для России и ближнего зарубежья).

Как превратить проблемы в преимущества

Универсальные рекомендации не работают одинаково хорошо для разных отраслей. Но это не проблема, а шанс выиграть еще больше.

Разберем на примерах, какая специфика есть у онлайн-продаж в конкретных отраслях и какую пользу можно из этого извлечь для бизнеса.

1. Товары повседневного спроса (FMCG)

Их ключевая особенность — низкая стоимость единицы товара. Также люди обычно покупают одни и те же товары с определенной периодичностью. Получается, что одна корзина — это раз от раза мало меняющий набор товаров.

Как рекомендательная система исправляет ситуацию:

  • Рекомендует товары, которые были в прошлых корзинах. Таким образом, если покупатель забыл что-то из необходимого, система ему напомнит.
  • Рекомендует попробовать более качественные и дорогие аналоги. При этом товары рекомендуются «на повышение» постепенно, чтобы не отпугнуть покупателя.
  • Рекомендует товары только в ценовом диапазоне, комфортном покупателю. Система помнит, какие покупки он делал в прошлом. Таким образом тот, кто привык экономить, не увидит в рекомендациях самых дорогих товаров, а тот, кто привык тратить много — дешевых.
  • Рекомендует новые товары. Если вы регулярно покупаете стиральный порошок, то вряд ли спонтанно перейдете на гель. Система подталкивает пользователей пробовать новые марки и виды товаров, тем самым управляя их привычками.

2. Товары для животных

У питомцев целый ряд особых характеристик: вид, порода, возраст. Поэтому корм для рыбок будет не лучшим подарком лабрадору. Впрочем, как и костюм на той-терьера.

Что исправляют в рекомендациях отраслевые алгоритмы:

  • Рекомендуют товары, соответствующие виртуальному профилю питомца. Рекомендательная система запоминает информацию о просмотрах и покупках пользователя и делает выводы: сколько у него домашних животных и что это за животные.
  • Учитывают все виды животных. Зоотовары есть не только для кошек и собак, а еще для грызунов всех мастей, рептилий, рыб, декоративных насекомых, птиц, да хоть карликовых свиней. Настройка рекомендательной системы должна быть особенно тонкой, иначе рекомендации просто не будут работать.
  • Кросс-селлинг зоотоваров. Система анализирует содержимое корзины и предлагает товары, которые к ним купили пользователи с похожими питомцами.

3. Косметика

Всё, что связано со здоровьем и красотой, нужно рекомендовать очень аккуратно и точно. Что учитывает рекомендательная система с отраслевой спецификой:

  • Лояльность определенным брендам. Аналогично с сегментом одежды, в косметике огромное влияние имеет торговая марка. Рекомендательная система запоминает предыдущие выборы покупателя и советует его любимый бренд чаще других.
  • Физиологические особенности. Их масса: тип кожи (сухая, нормальная, жирная), тип волос, аллергические реакции. Если этого не учитывать, ценность рекомендации будет стремиться к нулю.
  • Рассылки к праздникам. Косметика — популярный товар для подарков, в том числе на «женские» праздники. Рекомендательная система предложит владельцу магазина сделать email-рассылку с персональными предложениями накануне праздников, это с большей вероятностью заставит пользователей вернуться в магазин и посмотреть товары в каталоге.
  • Периодические покупки. Косметические средства покупаются регулярно, в этом они похожи на товары FMCG-сегмента, разница только в периодичности. Рекомендательная система советует пополнить запасы с помощью товарных рекомендаций на сайте и рассылок.

Примеров можно приводить много: на любую без исключения товарную тематику есть свой особый алгоритм рекомендаций:

  • Одежда и обувь — размеры, возраст, пол покупателя.
  • Детские товары — количество детей, их пол, размеры (если это одежда).
  • Аксессуары — материал, бренд, принадлежность коллекции (актуальной или прошлогодней).
  • Спорт и активный отдых — большое количество сопутствующих товаров (спортивного снаряжения), жесткое разделение по видам спорта.
  • Электроника — сложный товар, лояльность бренду, пол.
  • и так далее.

Список можно продолжать долго, но суть уже отражена полностью: рекомендательные системы с базовыми алгоритмами не всегда справляются с задачами продаж. Для этого существуют отраслевые алгоритмы — их как раз можно сравнить с обучающими курсами для продавцов-консультантов в крупных гипермаркетах.

Научите свои товарные рекомендации чуткости — говорят, благодарные покупатели тратят больше.

0
Добавить в избранное Сохранено
Авторизуйтесь
Вход с паролем
Первые Новые Популярные
Top Fan
Приложение для определения самых активных
Выбрать файл
Читайте далее
Загружаем…
Блог проекта
Расскажите историю о создании или развитии проекта, поиске команды, проблемах и решениях
Написать
Личный блог
Продвигайте свои услуги или личный бренд через интересные кейсы и статьи
Написать