Лучшие статьи и кейсы стартапов
Включить уведомления
Дадим сигнал, когда появится
что-то суперстоящее.
Спасибо, не надо
Главное Свежее   Проекты
Рекомендуем
Продвинуть свой проект
239 4 В избр. Сохранено
Авторизуйтесь
Вход с паролем

Оптимизация контекста на примере сервиса бронирования

​Клиент пришел к нам с чистого листа и с полным доверием, со словами: «Делайте всё, что посчитаете нужным». В этой статье расскажем некоторые вещи, которые мы использовали в работе с сервисом LeClick.

Вводные

Сервис занимается бронированием столиков в ресторанах и зарабатывает комиссию 10% от суммы чека гостя. Важно понимать, что чек может отличаться в десятки раз и еще, что человек может не дойти до ресторана. Также чек варьируется от кол-ва человек.

Важно еще отметить, что средний чек в разных ресторанах может отличаться в десятки раз. Есть люди, которые оставляют на компанию из 10 человек 3000 рублей, а есть рестораны, в которые люди часто ходят вдвоем на 30-50 тысяч рублей.

Контекстная реклама

Всю контекстную рекламу мы разделили на несколько основных групп:

  1. по названиям ресторанов
  2. по районам
  3. по метро
  4. по улицам
  5. по типам заведений (бар, мясной ресторан…)
  6. типы мероприятий (девишник, свадьба, банкет…)
  7. комбинации (пивной ресторан + метро, пивной ресторан + улица, пивной ресторан + район)

По названиям ресторанов сделали прежде всего большую кампанию со всеми ресторанами. Объявления выглядели так:

Бронирование столиков в «..»Онлайн бронирование столиков в ресторане ***. Бесплатно.

Эти объявления дали неплохой результат (CPA в среднем 300 рублей) но мы конечно же продолжили экспериментировать. На след этапе мы вручную составили объявления по каждому отдельному ресторану. Объявления второго этапа выглядели так:

Ресторан ****Неповторимый интерьер и прекрасная кухня в ресторане на Ордынке.

Причем каждому ресторану писали адекватное объявление, вообще ничего не писали про сервис бронирования, как будто это реклама самого ресторана. CTR увеличился примерно в 3 раза и соответственно стоимость клика снизилась примерно в 4 раза. CPA опустилось в среднем до 130 рублей. (количество отказов увеличилось, так как люди надеялись, что они переходят на сайт ресторана).

По районам, по метро, по улицам, по типам заведений, по типам мероприятий и комбинированные компании мы составили автоматом без труда. Учитывая, что стоимость перехода по ним низкая - особо с ними не возились, так как и так всё устраивало. Оставили все на управление Buber.Context, чтобы регулярно обновлялись ставки и объявления всегда были в спецразмещение без переплат.

Телефонные звонки

Мы начали строить прозрачную аналитику по онлайн и телефонным заказам.

Прежде всего столкнулись с тем, что при таком объеме трафика динамический call-Tracking (когда каждой сессии присваивается отдельный номер) нам не подходит, а при статическом call-Tracking - мы видим только каналы, но не понимаем с какого именно объявления пришел звонок. Также мы столкнулись с тем, что мы считаем кол-во входящих звонков но не понимаем, сколько этот звонок принес нам непосредственно денег (случилась ли бронь и сколько мы на ней заработали).

Мы сделали свою собственную систему, основанную на нескольких вводных:

  1. сравнение номера абонента и номера в заказе (это закрыло 40% вопросов)
  2. если в момент телефонного заказа столика в ресторане Х на странице этого ресторана находился только один человек - мы делаем вывод, что позвонил именно он.
  3. на всех внешних каналах (например в объявление Яндекс-Директ) мы указываем отдельный номер и там крайне легко понять, какое именно объявление привело к бронированию без перехода

В итоге мы закрыли 85-95% телефонных бронирований и знаем про них все.

Повторные заказы

Мы начали вести когорты анализ не только по транзакциям, но и с учетом того, что человек с этого номера уже звонил.

То есть:

  • мы потратили на человека Х рублей
  • он совершил бронь и принес нам У рублей
  • человек записал себе номер телефона (или же запомнил сайт)
  • все его повторные бронирования на самом деле относятся к первой трате на него.

Посчитать повторные заказы по онлайн бронированиям - не проблема, а вот комплексно считать повторные заказы с учетом, что он мог заказать первый раз онлайн, второй раз с телефона, а третий - из мобильного приложения - не самая простая задача, но когда мы всё это построили - получилась красивая картина и мы поняли, где у нас повторения.

Дни недели и часы

Мы начали анализировать конверсию и средний чек по дням недели и часам. Оказалось, что например в пятницу конверсия выше, но вероятность прихода и средний чек ниже, но не по всем ресторанам.

Оказалось, что в разных ресторанах конверсия в разные дни недели и вероятность прихода в разные дни недели разная и мы разработали систему гибкого управления контекстной рекламой, которая учитывала бы эту вероятность и в зависимости с ними корректировала ставки.

После внедрения этой системы мы повысили эффективность рекламы еще на 30%.

Учет повторных заказов

Дальше мы поставили перед собой задачу максимально увеличить количество клиентов, совершающих повторные заказы. Обнаружилось, что вероятность повторного заказа сильно зависит как от дня недели, так и от ресторана, в который осуществляется бронирование.

Мы проанализировали весь этот массив данных и добавили новые корректировки в механизмы управления контекстом. В результате мы стали уходить «в минус» по некоторым группам и в некоторые дни недели и часы, но у нас стала сильно увеличиваться база постоянной аудитории, которые совершают повторные заказы и не стоят повторно дополнительных денег.

Результаты

Бизнес очень сильно связан с сезонной активностью и у каждого сезона есть своя специфика и свои нюансы. Очевидно, что есть новый год, в который идет большое кол-во банкетов, но процент подтверждения броней минимальный, а есть лето, когда люди ходят на террасы и пьют исключительно чай с минимальным чеком.

Мы довели систему, чтобы она принимала решения на основании как общей статистики, так и статистики за последнее время по данному ресторану и на основании этой статистики управляла рекламой.

Получили контролируемую рекламу. Возможность получать как быстрое оборачивание денег, так и накапливание постоянных пользователей, в зависимости от того, что необходимо в данный момент бизнесу.

+1
В избр. Сохранено
Авторизуйтесь
Вход с паролем
Подбираем рекоммендации...
Комментарии
Первые Новые Популярные
Симулятор бизнес-процессов
Сервис имитационного моделирования и оптимизации бизнес-процессов
Prolis Labkk
Сами партнеры-рестораны не были в шоке, что из-за ваших объявлений их цена контекста увеличилась? Т.е. ресторан за клиента платит дважды - свой контекст и комиссия посредника.
Ответить
Buber.Roi
Прозрачная бизнес-маркетинговая аналитика онлайн для e-commerce, saas и фирм.
Evgueny Miroy
98% ресторанов не дают контекстную рекламу сами.
Конкуренты были в шоке конечно, потому что цена входа в гарантию по некоторым запросам по оценщику Яндекса составляет 30-50$
Ответить
Про Продвижение
Бутиковое SEO агентство
Виталий
Интересный кейс.
А отмены заказов часто бывают или просто не пришли?
Ответить
Buber.Roi
Прозрачная бизнес-маркетинговая аналитика онлайн для e-commerce, saas и фирм.
Evgueny Miroy
Бывают отмены пользователем, бывают отмены рестораном (например нет мест) или банкет на эту дату..
Есть также статистика, что в ресторан Х бронируют в основном на тот же день. Мы знаем, что в этот день в ресторане будет банкет - система отключает рекламу данного ресторана.
Если быть совсем точным, то не отключаем, а ставим ставку 1 цент, так как трафик по 1 центу если и придет, то его совсем не жалко, даже если будет отмена, а во-вторых, остановка-запуск объявления занимает в яндексе суммарно более часа, так что терять этот час не хочется в тот момент, когда нужно будет запуститься.
Ответить
Выбрать файл
Блог проекта
Расскажите историю о создании или развитии проекта, поиске команды, проблемах и решениях
Написать
Личный блог
Продвигайте свои услуги или личный бренд через интересные кейсы и статьи
Написать