Ученые Пермского Политеха нашли способ до 95% повысить точность распознавания действий человека с камер видеонаблюдения
Статья опубликована в журнале «Вестник ПНИПУ. Электротехника, информационные технологии, системы управления» № 3 за 2024 год. Исследование проведено в рамках реализации программы «Приоритет 2030».
Для распознавания действий с камер видеонаблюдения нужно выделить человека как отдельный объект, выявить информацию о положении его тела и последовательности движений. При этом необходимо хранить эти данные для дальнейшей обработки и решения задачи классификации. Важную роль в этом процессе играет математическая модель и способ ее представления.
Модели описания по набору кадров, когда действие в каждом из них идентифицируется отдельно, имеют недостаток — в поле могут находиться другие люди и предметы, из-за которых информация анализируется некорректно. Для устранения этого фактора чаще используют векторную модель — движения определяют при помощи последовательности координат ключевых точек в скелете человека. Для повышения точности их группируют, что позволяет алгоритму находить и обрабатывать информацию о различных частях тела.
Для точного распознавания объекта в пространстве данные подвергают процедуре нормализации, при которой ключевые точки из пиксельных переводятся в реальные значения. Существующие способы не учитывают большую вариативность поворотов и положения человека в пространстве. Одни и те же движения, выполненные при разном смещении относительно камеры, вероятнее всего, будут распознаны, как разные. Часто это затрудняет работу системы, требуется значительное увеличение объема памяти устройства и усложнение алгоритмов расчета, что не всегда практически реализуемо с точки зрения временных и финансовых ресурсов.
Ученые Пермского Политеха нашли способ ускорить обработку получаемого видеоматериала и повысить точность определения движений объекта. Для этого они проанализировали существующие модели распознавания скелетов людей и используемые алгоритмы обработки. По результатам исследования они предложили внедрить в систему видеонаблюдения оригинальные модель и технологию нормализации видеоизображений.
— Мы создали упрощенную модель, в которой отсутствует лишняя для наших исследований информация, например, о положении пальцев рук. Зачастую их местонахождение зашумлено, но при этом на обработку также уходит время, усложняется процесс распознавания действий. Ключевыми точками в нашей модели стали глаза, плечи, бедра, локти, кисти, колени и ступни. Также мы предложили алгоритм преобразования информации о движении скелета человека, который распознает действия, сравнивая для большей точности данные с разных камер или под разными углами, — рассказывает Александр Князев, аспирант кафедры «Информационные технологии и автоматизированные системы» ПНИПУ.
— Эксперименты показали, что наша модель и технология нормализации видеоизображений позволили достичь точности распознавания в 95%. А применение первичных данных обеспечивало лишь 35 % точности, — комментирует Рустам Файзрахманов, заведующий кафедрой «Информационные технологии и автоматизированные системы» ПНИПУ, доктор экономических наук.
Внедрение разработки ученых Пермского Политеха позволит улучшить точность распознавания действий человека с камер видеонаблюдения, что эффективно для мониторинга и сохранения безопасности на производственных предприятиях, охраняемых территориях и общественных местах. Интерес к разрабатываемой технологии уже проявили несколько промышленных компаний. Инициатива поддержана Фондом содействия инноваций — одобрен грант по программе Старт-1.