редакции
84% компаний в мире внедряют ML в работу. И нам нужно?
В ML продолжают инвестировать, хоть и чуть меньше
В 2022 году инвестиции в ИИ сократились до $104 млрд по сравнению с 2021 годом, когда на искусственный интеллект выделяли $146,8 млрд. Тем не менее, это все равно больше, чем 2018–2020 годах — тогда инвестиции в среднем составляли $73,5 млрд.

В 2023 году 84% компаний в мире и работали над внедрением AI/ML решений или считали это своим главным приоритетом.
К 2024 году более 51% eCom бизнесов в мире используют искусственный интеллект и машинное обучение как минимум в одной функции.
Основной пик интереса чуть спал, но тем не менее компании видят пользу в развитии этого направления. Благодаря притоку инвестиций модели на основе искусственного интеллекта становятся более точными.
Как ML применяют в eCommerce
Машинное обучение помогает компьютерам обучаться на примерах и данных, чтобы принимать решения и выполнять рабочие задачи бизнеса.
1. ML прогнозирует спрос и помогает к нему готовиться.
По опыту Riverstart, чаще бизнесу интересно использование инструментов машинного обучения для прогнозирования спроса. Модель с помощью исторических данных за последние несколько лет может оценить существующие тенденции и предсказать в какие моменты спрос будет повышен или понижен. Так бизнес может заранее решать кадровые, логистические и другие вопросы, минимизируя издержки и колебания рынка. Пример: международная FMCG-компания внедрила в работу ML для прогнозирования спроса. По заявлению компании, выручка увеличилась на 2%, а прибыльность маркетинговых компаний на 7%. Прогнозирование с ML позволило убрать человеческий фактор: раньше региональные менеджеры могли расходовать маркетинговый бюджет, чтобы стимулировать спрос ради выполнения собственных KPI. Сервисы на основе машинного обучения могут автоматически просчитывать оптимальные варианты по доставке, учитывая множество параметров: расположение продавца и покупателя, вид товара, его вес и габариты, загрузку курьерских служб и прочие. Например, компания Alibaba задалась целью — выполнять заказы на материке в течение 24 часов и в течение 72 часов по всему миру. Она не стала создавать компанию курьерской службы, а еще в 2017 году инвестировала в платформу Cainiao Smart logistic на основе AI/ML. Платформа в реальном времени подбирает продавцам самый эффективный вариант доставки на основе местоположения, габаритов товара и доступных компаний-доставщиков. В итоге компания Alibaba сообщила о снижении количества ошибок в логистике на 40% благодаря использованию платформы. Для избежания ситуаций с «простоем» товаров на складах или напротив, с недостатком продукции, можно использовать модель. Она спрогнозирует спрос на конкретный товар, используя существующие цены, текущие акции, исторические данные и другие параметры. В результате бизнес может снизить расходы на аренду, повысить доступность товаров для потребителя и упростить логистические вопросы. Пример из опыта Riverstart — компания-лидер в отрасли производства упаковки для товаров из пластика. Она работает на рынке со сложнопрогнозируемым спросом и регулярно сталкивается с дилеммой: согласится на внезапный крупный заказ и покупать сырье по повышенным ценам с привлечением кредитов или отказываться от заказа, теряя клиента, репутацию и доход. Для решения этой задачи компании внедрили систему прогнозирования спроса на базе ML. За 3 месяца провели несколько этапов тестов системы и в результате компания отметила, что ежемесячно стала экономить от 2 млн рублей, поскольку перестала брать кредиты на срочную внеплановую закупку и избавилась от непредвиденных расходов на хранение неиспользуемого сырья. Больше возможностей разобрали в статье для e-pepper. Первоначальный ажиотаж вокруг новой и сложной технологии постепенно утихает, устойчивый интерес к ней остается. Данные опросов показывают, что что все больше компаний будут внедрять машинное обучение в свою работу, чтобы оптимизировать бизнес-процессы и повысить точность прогнозов.


2. ML оптимизирует логистику
3. ML ведет учет складских остатков
Ажиотаж стихает, но ИИ работает